Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
American Journal of Preventive Cardiology ; 13:100414, 2023.
Article in English | ScienceDirect | ID: covidwho-2176076

ABSTRACT

Therapeutic Area ASCVD/CVD in Special Populations Background An ICD-10 code for Familial Hypercholesterolemia (FH), E78.01, became effective October 2016 following a proposal by the Family Heart Foundation. It differentiated FH from other forms of elevated cholesterol with a goal of increasing assessment of this treatable genetic condition. Prior to E78.01, <1% of FH patients in the US were diagnosed (Nordestgarrd, 2013). This study aims to characterize the current number and percent of FH patients diagnosed with E78.01 in an expansive, real-world US dataset. Methods The Family Heart Database includes 197 million people including 22 million children with diagnostic data from claims who were screened or treated for any form of cardiovascular risk from October 2016 through June 2020. Patients with FH (E78.01) were counted if the diagnostic code was applied for a single in-patient claim or at least twice, >7 days apart, for an out-patient claim. The number of total (diagnosed + undiagnosed) FH patients within the dataset was estimated assuming an occurrence of 1:250 individuals. Results Patients diagnosed with FH using E78.01 has increased substantially since 2016. During 2017 and 2018, use of the code was brisk and likely included previously and newly diagnosed individuals. Diagnosis was reduced dramatically with the onset of the COVID-19 pandemic corresponding with the marked reduction of in-person clinic visits and near halting of preventive care. By June 2020, 246,689 FH patients were diagnosed representing 31.3% of the estimated total (diagnosed + undiagnosed) FH population of 787,886 within the dataset. At the time of E78.01 code assignment, 52% of diagnosed FH patients were female;51% were aged 18 to 65 years, 47% were >65 years;they were Black (8%), Hispanic (5%), White (54%), and Other/Unknown (33%);40% had ASCVD and household income ranged from <$30K (13%) to >$100K (20%). Conclusion The number of patients diagnosed with FH (E78.01) has increased substantially since 2016. Within this large, real-world dataset of Americans, 31.3% of the estimated FH population had been diagnosed as of Jun 2020. However, most FH patients remain undiagnosed, delaying treatment and cascade screening. The rate of diagnosis was also hampered by the COVID-19 pandemic.

2.
Cell Rep ; 41(3): 111496, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2075981

ABSTRACT

It is important to determine if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and SARS-CoV-2 mRNA vaccinations elicit different types of antibodies. Here, we characterize the magnitude and specificity of SARS-CoV-2 spike-reactive antibodies from 10 acutely infected health care workers with no prior SARS-CoV-2 exposure history and 23 participants who received SARS-CoV-2 mRNA vaccines. We found that infection and primary mRNA vaccination elicit S1- and S2-reactive antibodies, while secondary vaccination boosts mostly S1 antibodies. Using absorption assays, we found that SARS-CoV-2 infections elicit a large proportion of original antigenic sin-like antibodies that bind efficiently to the spike of common seasonal human coronaviruses but poorly to the spike of SARS-CoV-2. In converse, vaccination modestly boosts antibodies reactive to the spike of common seasonal human coronaviruses, and these antibodies cross-react more efficiently to the spike of SARS-CoV-2. Our data indicate that SARS-CoV-2 infections and mRNA vaccinations elicit fundamentally different antibody responses.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Vaccination , RNA, Messenger/genetics
3.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Article in English | MEDLINE | ID: covidwho-1931425

ABSTRACT

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Subject(s)
COVID-19 , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Alleles , COVID-19/genetics , Hospitalization , Humans , SARS-CoV-2/genetics
4.
Mol Ther Methods Clin Dev ; 26: 266-278, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-1914874

ABSTRACT

Although several therapeutics are used to treat coronavirus disease 2019 (COVID-19) patients, there is still no definitive metabolic marker to evaluate disease severity and recovery or a quantitative test to end quarantine. Because severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects human cells via the angiotensin-converting-enzyme 2 (ACE2) receptor and COVID-19 is associated with renin-angiotensin system dysregulation, we evaluated soluble ACE2 (sACE2) activity in the plasma/saliva of 80 hospitalized COVID-19 patients and 27 non-COVID-19 volunteers, and levels of ACE2/Ang (1-7) in plasma or membrane (mACE2) in lung autopsy samples. sACE2 activity was markedly reduced (p < 0.0001) in COVID-19 plasma (n = 59) compared with controls (n = 27). Nadir sACE2 activity in early hospitalization was restored during disease recovery, irrespective of patient age, demographic variations, or comorbidity; in convalescent plasma-administered patients (n = 45), restoration was statistically higher than matched controls (n = 22, p = 0.0021). ACE2 activity was also substantially reduced in the saliva of COVID-19 patients compared with controls (p = 0.0065). There is a strong inverse correlation between sACE2 concentration and sACE2 activity and Ang (1-7) levels in participant plasmas. However, there were no difference in membrane ACE2 levels in lungs of autopsy tissues of COVID-19 (n = 800) versus other conditions (n = 300). These clinical observations suggest sACE2 activity as a potential biomarker and therapeutic target for COVID-19.

5.
Nat Genet ; 54(4): 382-392, 2022 04.
Article in English | MEDLINE | ID: covidwho-1730302

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genome-Wide Association Study , Humans , Risk Factors , SARS-CoV-2/genetics
6.
Nature ; 607(7917): 97-103, 2022 07.
Article in English | MEDLINE | ID: covidwho-1730298

ABSTRACT

Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.


Subject(s)
COVID-19 , Critical Illness , Genome, Human , Host-Pathogen Interactions , Whole Genome Sequencing , ATP-Binding Cassette Transporters , COVID-19/genetics , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules , Critical Care , Critical Illness/mortality , E-Selectin , Factor VIII , Fucosyltransferases , Genome, Human/genetics , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Humans , Interleukin-10 Receptor beta Subunit , Lectins, C-Type , Mucin-1 , Nerve Tissue Proteins , Phospholipid Transfer Proteins , Receptors, Cell Surface , Repressor Proteins , SARS-CoV-2/pathogenicity
7.
J Psychiatr Res ; 148: 250-257, 2022 04.
Article in English | MEDLINE | ID: covidwho-1700478

ABSTRACT

Resilience is a dynamic process through which people adjust to adversity and buffer anxiety and depression. The COVID-19 global pandemic has introduced a shared source of adversity for people across the world, with detrimental implications for mental health. Despite the pronounced vulnerability of autistic adults to anxiety and depression during the COVID-19 pandemic, relationships among autism-related quantitative traits, resilience, and mental health outcomes have not been examined. As such, we aimed to describe the relationships between these traits in a sample enriched in autism spectrum-related quantitative traits during the COVID-19 pandemic. We also aimed to investigate the impact of demographic and social factors on these relationships. Across three independent samples of adults, we assessed resilience factors, autism-related quantitative traits, anxiety symptoms, and depression symptoms during the COVID-19 pandemic. One sample (recruited via the Autism Spectrum Program of Excellence, n = 201) was enriched for autism traits while the other two (recruited via Amazon Mechanical Turk, n = 624 and Facebook, n = 929) drew from the general population. We found resilience factors and quantitative autism-related traits to be inversely related, regardless of the resilience measure used. Additionally, we found that resilience factors moderate the relationship between autism-related quantitative traits and depression symptoms such that resilience appears to be protective. Across the neurodiversity spectrum, resilience factors may be targets to improve mental health outcomes. This approach may be especially important during the ongoing COVID-19 pandemic and in its aftermath.


Subject(s)
Autistic Disorder , COVID-19 , Adult , Anxiety/epidemiology , Autistic Disorder/epidemiology , Depression/epidemiology , Humans , Outcome Assessment, Health Care , Pandemics , SARS-CoV-2
8.
JAMA Intern Med ; 182(3): 291-300, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1637435

ABSTRACT

IMPORTANCE: Telomeres protect DNA from damage. Because they shorten with each mitotic cycle, leukocyte telomere length (LTL) serves as a mitotic clock. Reduced LTL has been associated with multiple human disorders. OBJECTIVE: To determine the association between LTL and overall as well as disease-specific mortality and morbidity. DESIGN, SETTING, AND PARTICIPANTS: This multicenter, community-based cohort study conducted from March 2006 to December 2010 included longitudinal follow-up (mean [SD], 12 [2] years) for 472 432 English participants from the United Kingdom Biobank (UK Biobank) and analyzed morbidity and mortality. The data were analyzed in 2021. MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) and odds ratios for mortality and morbidity associated with a standard deviation change in LTL, adjusted for age, sex, body mass index (calculated as weight in kilograms divided by height in meters squared), and ethnicity. RESULTS: This study included a total of 472 432 English participants, of whom 54% were women (mean age, 57 years). Reduced LTL was associated with increased overall (HR, 1.08; 95% CI, 1.07-1.09), cardiovascular (HR, 1.09; 95% CI, 1.06-1.12), respiratory (HR, 1.40; 95% CI, 1.34-1.45), digestive (HR, 1.26; 95% CI, 1.19-1.33), musculoskeletal (HR, 1.51; 95% CI, 1.35-1.92), and COVID-19 (HR, 1.15; 95% CI, 1.07-1.23) mortality, but not cancer-related mortality. A total of 214 disorders were significantly overrepresented and 37 underrepresented in participants with shorter LTL. Respiratory (11%), digestive/liver-related (14%), circulatory (18%), and musculoskeletal conditions (6%), together with infections (5%), accounted for most positive associations, whereas (benign) neoplasms and endocrinologic/metabolic disorders were the most underrepresented entities. Malignant tumors, esophageal cancer, and lymphoid and myeloid leukemia were significantly more common in participants with shorter LTL, whereas brain cancer and melanoma were less prevalent. While smoking and alcohol consumption were associated with shorter LTL, additional adjustment for both factors, as well as cognitive function/major comorbid conditions, did not significantly alter the results. CONCLUSIONS AND RELEVANCE: This cohort study found that shorter LTL was associated with a small risk increase of overall mortality, but a higher risk of mortality was associated with specific organs and diseases.


Subject(s)
Leukocytes/physiology , Mortality/trends , Telomere/physiology , Adult , Aged , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Middle Aged , Risk , United Kingdom
10.
Biomedicines ; 9(12)2021 Nov 29.
Article in English | MEDLINE | ID: covidwho-1542416

ABSTRACT

The balance between neurodegeneration, neuroinflammation, neuroprotection, and COVID-19-directed therapy may underly the heterogeneity of SARS-CoV-2's neurological outcomes. A total of 105 patients hospitalized with a diagnosis of COVID-19 had serum collected over a 6 month period to assess neuroinflammatory (MIF, CCL23, MCP-1), neuro-injury (NFL, NCAM-1), neurodegenerative (KLK6, τ, phospho τ, amyloids, TDP43, YKL40), and neuroprotective (clusterin, fetuin, TREM-2) proteins. These were compared to markers of nonspecific inflammatory responses (IL-6, D-dimer, CRP) and of the overall viral burden (spike protein). Data regarding treatment (steroids, convalescent plasma, remdasavir), pre-existing conditions, and incidences of strokes were collected. Amyloid ß42, TDP43, NF-L, and KLK6 serum levels declined 2-3 days post-admission, yet recovered to admission baseline levels by 7 days. YKL-40 and NCAM-1 levels remained elevated over time, with clusters of differential responses identified among TREM-2, TDP43, and YKL40. Fetuin was elevated after the onset of COVID-19 while TREM-2 initially declined before significantly increasing over time. MIF serum level was increased 3-7 days after admission. Ferritin correlated with TDP-43 and KLK6. No treatment with remdesivir coincided with elevations in Amyloid-ß40. A lack of convalescent plasma resulted in increased NCAM-1 and total tau, and steroidal treatments did not significantly affect any markers. A total of 11 incidences of stroke were registered up to six months after initial admission for COVID-19. Elevated D-dimer, platelet counts, IL-6, and leukopenia were observed. Variable MIF serum levels differentiated patients with CVA from those who did not have a stroke during the acute phase of COVID-19. This study demonstrated concomitant and opposite changes in neurodegenerative and neuroprotective markers persisting well into recovery.

11.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750509

ABSTRACT

Limited data are available for pregnant women affected by SARS-CoV-2. Serological tests are critically important to determine exposure and immunity to SARS-CoV-2 within both individuals and populations. We completed SARS-CoV-2 serological testing of 1,293 parturient women at two centers in Philadelphia from April 4 to June 3, 2020. We tested 834 pre-pandemic samples collected in 2019 and 15 samples from COVID-19 recovered donors to validate our assay, which has a ~1% false positive rate. We found 80/1,293 (6.2%) of parturient women possessed IgG and/or IgM SARS-CoV-2-specific antibodies. We found race/ethnicity differences in seroprevalence rates, with higher rates in Black/non-Hispanic and Hispanic/Latino women. Of the 72 seropositive women who also received nasopharyngeal polymerase chain reaction testing during pregnancy, 46 (64%) were positive. Continued serologic surveillance among pregnant women may inform perinatal clinical practices and can potentially be used to estimate seroprevalence within the community.

13.
Sci Rep ; 11(1): 19675, 2021 10 04.
Article in English | MEDLINE | ID: covidwho-1450292

ABSTRACT

Kidney function is affected in COVID-19, while kidney itself modulates the immune response. Here, hypothesize if COVID-19 urine biomarkers level can assess immune activation vs. clinical trajectory. Considering the kidney's critical role in modulating the immune response, we sought to analyze activation markers in patients with pre-existing dysfunction. This was a cross-sectional study of 68 patients. Blood and urine were collected within 48 h of hospital admission (H1), followed by 96 h (H2), seven days (H3), and up to 25 days (H4) from admission. Serum level ferritin, procalcitonin, IL-6 assessed immune activation overall, while the response to viral burden was gauged with serum level of spike protein and αspike IgM and IgG. 39 markers correlated highly between urine and blood. Age and race, and to a lesser extend gender, differentiated several urine markers. The burden of pre-existing conditions correlated with urine DCN, CAIX and PTN, but inversely with IL-5 or MCP-4. Higher urinary IL-12 and lower CAIX, CCL23, IL-15, IL-18, MCP-1, MCP-3, MUC-16, PD-L1, TNFRS12A, and TNFRS21 signified non-survivors. APACHE correlated with urine TNFRS12, PGF, CAIX, DCN, CXCL6, and EGF. Admission urine LAG-3 and IL-2 predicted death. Pre-existing kidney disease had a unique pattern of urinary inflammatory markers. Acute kidney injury was associated, and to a certain degree, predicted by IFNg, TWEAK, MMP7, and MUC-16. Remdesavir had a more profound effect on the urine biomarkers than steroids. Urinary biomarkers correlated with clinical status, kidney function, markers of the immune system activation, and probability of demise in COVID-19.


Subject(s)
Acute Kidney Injury/pathology , Biomarkers/urine , COVID-19/immunology , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/complications , Adult , Aged , Antigens, CD/urine , Biomarkers/blood , CA-125 Antigen/urine , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Chemokines, CC/blood , Cross-Sectional Studies , Female , Humans , Interleukin-12/urine , Interleukin-6/blood , Male , Membrane Proteins/urine , Middle Aged , Procalcitonin/blood , Renal Insufficiency, Chronic/complications , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index , Spike Glycoprotein, Coronavirus/blood , Lymphocyte Activation Gene 3 Protein
14.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: covidwho-1447424

ABSTRACT

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome-CoV, and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors, including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR-tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35-0.74], P = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type-dependent manner. Targeting GSK-3 may therefore provide an approach to treat COVID-19 and future coronavirus outbreaks.


Subject(s)
COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Lithium Compounds/therapeutic use , Adult , Aged , Female , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , Humans , Lithium Compounds/pharmacology , Male , Middle Aged , Molecular Targeted Therapy , Phosphoproteins/metabolism , Phosphorylation/drug effects , Retrospective Studies
15.
Hepatology ; 74(4): 1825-1844, 2021 10.
Article in English | MEDLINE | ID: covidwho-1372726

ABSTRACT

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Subject(s)
End Stage Liver Disease/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organoids/metabolism , Adult , Aged , Biopsy , COVID-19/complications , COVID-19/virology , Cell Differentiation/immunology , End Stage Liver Disease/immunology , Female , Gene Expression Profiling , Healthy Volunteers , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Liver/immunology , Liver Regeneration , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/virology , Organoids/immunology , SARS-CoV-2/immunology , Up-Regulation/immunology
16.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1369459

ABSTRACT

Some studies suggest that recent common coronavirus (CCV) infections are associated with reduced COVID-19 severity upon SARS-CoV-2 infection. We completed serological assays using samples collected from health care workers to identify antibody types associated with SARS-CoV-2 protection and COVID-19 symptom duration. Rare SARS-CoV-2 cross-reactive antibodies elicited by past CCV infections were not associated with protection; however, the duration of symptoms following SARS-CoV-2 infections was significantly reduced in individuals with higher common betacoronavirus (ßCoV) antibody titers. Since antibody titers decline over time after CCV infections, individuals in our cohort with higher ßCoV antibody titers were more likely recently infected with common ßCoVs compared with individuals with lower antibody titers. Therefore, our data suggest that recent ßCoV infections potentially limit the duration of symptoms following SARS-CoV-2 infections through mechanisms that do not involve cross-reactive antibodies. Our data are consistent with the emerging hypothesis that cellular immune responses elicited by recent common ßCoV infections transiently reduce symptom duration following SARS-CoV-2 infections.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19/immunology , Health Personnel , SARS-CoV-2/immunology , Adult , Cross Reactions , Female , Humans , Male , Middle Aged , Time Factors
18.
Cell Metab ; 33(8): 1592-1609.e7, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1300705

ABSTRACT

Glucocorticoids (GCs) are widely used as anti-inflammatory drugs, but their long-term use has severe metabolic side effects. Here, by treating multiple individual adipose stem cell-derived adipocytes and induced pluripotent stem cell-derived hepatocytes with the potent GC dexamethasone (Dex), we uncovered cell-type-specific and individual-specific GC-dependent transcriptomes and glucocorticoid receptor (GR) cistromes. Individual-specific GR binding could be traced to single-nucleotide polymorphisms (SNPs) that altered the binding motifs of GR or its cooperating factors. We also discovered another set of genetic variants that modulated Dex response through affecting chromatin accessibility or chromatin architecture. Several SNPs that altered Dex-regulated GR binding and gene expression controlled Dex-driven metabolic perturbations. Remarkably, these genetic variations were highly associated with increases in serum glucose, lipids, and body mass in subjects on GC therapy. Knowledge of the genetic variants that predispose individuals to metabolic side effects allows for a precision medicine approach to the use of clinically relevant GCs.


Subject(s)
Epigenomics , Glucocorticoids , Adipocytes/metabolism , Anti-Inflammatory Agents , Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
19.
JCO Oncol Pract ; 17(12): e1879-e1886, 2021 12.
Article in English | MEDLINE | ID: covidwho-1270943

ABSTRACT

PURPOSE: Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. We aimed to gauge the effectiveness of these measures at the University of Pennsylvania. METHODS: We conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between May 21, 2020, and October 8, 2020. Participants completed questionnaires and had up to five serial blood collections. RESULTS: Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95% CI, 0.0 TO 4.1%) over 14.8 person-years of follow up, with a median of 13 health care visits per patient. CONCLUSION: These results suggest that patients with cancer receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.


Subject(s)
COVID-19 , Neoplasms , Humans , Longitudinal Studies , Neoplasms/therapy , Pandemics , SARS-CoV-2 , Seroconversion
20.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1071140

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Subject(s)
Alphacoronavirus/immunology , Antibodies, Viral , Betacoronavirus/immunology , COVID-19/immunology , Adolescent , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing , Child , Child, Preschool , Chlorocebus aethiops , Cross Protection , Cross Reactions , Disease Susceptibility , HEK293 Cells , Humans , Infant , Infant, Newborn , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL